Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 88: 102380, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615643

RESUMO

The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-ß, BMP, Wnt/ß-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.

2.
Discov Med ; 36(181): 294-307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409835

RESUMO

BACKGROUND: Stem cell-based therapies display immense potential in regenerative medicine, highlighting the crucial significance of devising efficient delivery methods. This study centers on a pioneering approach that utilizes Pluronic F127 (PF127) as a thermoresponsive and injectable hydrogel designed for the encapsulation of adipose-derived mesenchymal stem cells (AdMSCs). METHODS: The degradation profile, gelation time, and microstructure of the PF127 hydrogel were thoroughly examined. AdMSCs were isolated, expanded, and characterized based on their multi-lineage differentiation potential. AdMSCs from the third passage were specifically employed for encapsulation within the PF127 hydrogel. Subsequently, the cytotoxicity of the AdMSC-loaded PF127 hydrogel was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assays. RESULTS: Characterized by scanning electron microscopy (SEM), the PF127 hydrogel exhibited a porous structure, indicating its suitability for accommodating AdMSCs and facilitating wound healing. The PF127 hydrogel demonstrated reversible phase transitions, rendering it suitable for in vivo applications. Studies on the gelation time of PF127 hydrogel unveiled a concentration-dependent decrease in gelation time, offering adaptability for diverse medical applications. Analysis of the degradation profile showcased a seven-day degradation period, leading to the decision for weekly topical applications. Cytotoxicity assessments confirmed that AdMSCs loaded into the PF127 hydrogel maintained heightened metabolic activity for up to one week, affirming the safety and appropriateness of the PF127 hydrogel for encapsulating cellular therapeutics. Furthermore, cell apoptosis assays consistently indicated low rates of apoptosis, emphasizing the viability and robust health of AdMSCs when delivered within the hydrogel. CONCLUSIONS: These findings underscore the vast potential of PF127 hydrogel as a versatile and biocompatible delivery system for AdMSCs in the realm of regenerative medicine. Boasting adjustable gelation properties and a remarkable capacity for cell encapsulation, this pioneering delivery system presents a promising path for applications in tissue engineering and wound healing. Ultimately, these advancements propel and elevate the landscape of regenerative medicine.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/química , Poloxâmero/química
3.
Cell Physiol Biochem ; 57(6): 452-477, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37978922

RESUMO

BACKGROUND/AIMS: All body functions are activated, synchronized and controlled by a substantial, complex network, the nervous system. Upon injury, pathophysiology of the nerve injury proceeds through different paths. The axon may undergo a degenerative retraction from the site of injury for a short distance unless the injury is near to the cell body, in which case it continues to the soma and undergoes retrograde neuronal degeneration. Otherwise, the distal section suffers from Wallerian degeneration, which is marked by axonal swelling, spheroids, and cytoskeleton degeneration. The objective of the study was to evaluate the potential of mesenchymal stem cell laden neural scaffold and insulin-like growth factor I (IGF-I) in nerve regeneration following sciatic nerve injury in a rat model. METHODS: The animals were anaesthetized and a cranio-lateral incision over left thigh was made. Sciatic nerve was exposed and crush injury was introduced for 90 seconds using haemostat at second locking position. The muscle and skin were sutured in routine fashion and thus the rat model of sciatic crush injury was prepared. The animal models were equally distributed into 5 different groups namely A, B, C, D and E and treated with phosphate buffer saline (PBS), carbon nanotubes based neural scaffold only, scaffold with IGF-I, stem cell laden scaffold and stem cell laden scaffold with IGF-I respectively. In vitro scaffold testing was performed. The nerve regeneration was assessed based on physico-neuronal, biochemical, histopathological examination, and relative expression of NRP-1, NRP-2 and GAP-43 and scanning electron microscopy. RESULTS: Sciatic nerve injury model with crush injury produced for 90 seconds was standardized and successfully used in this study. All the biochemical parameters were in normal range in all the groups indicating no scaffold related changes. Physico-neuronal, histopathological, relative gene expression and scanning electron microscopy observations revealed appreciable nerve regeneration in groups E and D, followed by C and B. Restricted to no regeneration was observed in group A. CONCLUSION: Carbon nanotubes based scaffold provided electro-conductivity for proper neuronal regeneration while rat bone marrow-derived mesenchymal stem cells were found to induce axonal sprouting, cellular transformation; whereas IGF-I induced stem cell differentiation, myelin synthesis, angiogenesis and muscle differentiation.


Assuntos
Lesões por Esmagamento , Células-Tronco Mesenquimais , Nanotubos de Carbono , Neuropatia Ciática , Ratos , Animais , Ratos Wistar , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/patologia , Nervo Isquiático/lesões , Regeneração Nervosa/fisiologia , Lesões por Esmagamento/tratamento farmacológico , Lesões por Esmagamento/patologia , Células-Tronco Mesenquimais/patologia , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...